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SUMMARY

A new mesh-patching model is presented for shallow water �ow described by the 2D non-linear shallow
water (NLSW) equations. The mesh-patching model is based on AMAZON, a high-resolution NLSW
engine with an improved HLLC approximate Riemann solver. A new patching algorithm has been
developed, which not only provides improved spatial resolution of �ow features in particular parts of
the mesh, but also simpli�es and speeds up the (structured) grid generation process for an area with
complicated geometry. The new patching technique is also compatible with increasingly popular parallel
computing and adaptive grid techniques. The patching algorithm has been tested with moving bores,
and results of test problems are presented and compared to previous work. Copyright ? 2005 John
Wiley & Sons, Ltd.

KEY WORDS: nonlinear shallow water equations; �nite volume method; mesh patching; multi-block;
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1. INTRODUCTION

The patching technique, also known as the zonal approach [1] in computational aerodynamics,
was originally developed to tackle di�culties associated with grid generation over complex
geometries. Although a considerable level of �exibility has been obtained with single-block
structured grids, there are many applications especially in aerodynamics involving multiply
connected domains, which may not be suitably discretized by a single structured grid [2].
Recently, increased interest in parallel computing has led to a need for more accurate, ef-
�cient and reliable patching algorithms, also called multi-block algorithms in the parallel
computing community. Although unstructured grids have great �exibility in terms of grid
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adaptation, research on patching techniques with their simpler data structures has focused on
the structured grids, particularly the quadrilateral grid system. Patching algorithms for struc-
tured grids can be classi�ed into overlaid, e.g. References [3–5], and non-overlaid systems, e.g.
References [1, 2].
Probably the development of patching techniques in computational hydraulics was initially

associated with the problems with mesh nesting [6]. In a nested model, a �ne grid is embed-
ded in a coarse gird to improve the grid resolution in areas of interest, but the components
are not hydrodynamically linked. Nevertheless, the nesting technique has been widely used
in tidal and wave modelling in coastal engineering in spite of this potential defect. The ideal
solution to this problem is the patching technique where the individual mesh components are
hydrodynamically linked. However, in many existing popular implicit �nite di�erence solvers,
the technique is di�cult to implement, and such research in computational hydraulics is
rarely reported.
Compared to mesh nesting, mesh patching has many other uses apart from the advantage of

a hydrodynamically-linked connection between the main �ow model and sub-models. Unlike
the nesting technique, a patched model does not have to be embedded in the main model. It
can simply be an extension of the main model or another sub-model. This attribute is most
useful for modelling an estuarine area with complicated mud �ats and water causeways. A
rectilinear Cartesian grid with its saw-tooth representation of irregular boundaries is insu�-
ciently accurate, and a curvilinear model based on the equation transformation method may
have di�culty in generating a suitable structured grid. Using the patching technique, a compu-
tational grid is generated separately for each region, and sub-grids that may vary in resolution
from one area to another are then linked together. This approach simpli�es the generation of
a suitable curvilinear structured grid.
Furthermore, the patching technique can be used as a basis for a so-called adaptive grid

system. An adaptive grid is useful for tracking a moving �ow phenomenon. This requires
a �ne grid generated locally to the moving phenomenon so that the hydraulic details can
be revealed. An e�cient grid generation method is essential as the grid may need to be
re-generated at each time step. Using the patching technique, a front tracking sub-grid model
is embedded in the main model, which may occupy a block of a few cells in the main
model. The tracking sub-grid is based on the splitting of relevant cells of the main grid. This
approach requires little extra computational e�ort since only the sub-grid model requires grid
re-generation. This resembles a quad-tree grid in an adaptive grid system [7] but without the
small time step problem for the whole grid.
In summary, the bene�ts of the patching technique are:

(1) simpli�es the generation of a boundary-�tted curvilinear grid;
(2) enhances the ability to adopt a resolution-varying grid for higher computing e�ciency;
(3) improves computing speed by using local time steps and the one-dimensional CFL

condition, an advantage of the structured grid (see Section 3.3);
(4) compatible with parallel computing;
(5) extendable to an adaptive grid system.

Although successfully patching techniques to the Reynolds-averaged Navier–Stokes equations
were report by Furukawa et al. [1] and Lien et al. [2], the authors are not aware of any
similar studies on the non-linear shallow water equations and MUSCL re-construction [8]
with Hancock time integration method [9] associated with modern upwind Godunov schemes.
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Di�erence in time steps between two models prevents straightforward implementation of the
MUSCL re-construction of values at boundaries at the corrector step.
A new patching algorithm is presented in this paper, which is based on a non-linear shallow

water (NLSW) numerical engine AMAZON [10], which uses a cell-centred �nite volume
method with a structured quadrilateral mesh. The �ux-balance form of the �nite volume
method provides a reliable platform to implement a patching algorithm. The conservation of
mass and momentum is assured by proper treatment of the numerical �uxes at the patching
interface. The new patching algorithm has been tested, and the potential problem in time
matching for second-order accuracy is carefully addressed.
The new model is written in an object-orientated form. The model provides two basic

patching operators, i.e. attach and embed. Each model is treated as an ‘object’, which can
be attached or embedded. This provides e�ortless multiple attach and embed connections.
The test results demonstrate that the patching model can dramatically reduce the computation
time while the same resolution used by the non-patching model is maintained in the area
of interest.

2. GOVERNING EQUATIONS

The shallow water equations can be written in integral form as an expression of the funda-
mental laws of conservation of mass, momentum and energy:
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where u, v are the depth-averaged velocity components in the horizontal x, y directions and q
is the vector of the depth-averaged velocity; D is the depth of water; f is the Coriolis force;
�bx and �by are the bed friction shear stresses in x and y directions, respectively; �wx and
�wy are the surface wind shear stresses in x and y directions, respectively; � is an arbitrary
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2D region with boundary �; S is an outward-pointing surface normal vector; ĩ and j̃ are
unit vector in x and y directions respectively; and H is the �ux tensor for inviscid �ows.
The source terms are contained within the vector QS representing bed slope and viscous
terms, and the vector QV containing bed and surface stresses; h is the bed level below an
arbitrary datum.

3. NUMERICAL SCHEMES FOR NLSW

The NLSW model described by Equations (1)–(4) includes the convective, bed slope, viscous,
Coriolis force, bed and surface stress terms. From the numerical viewpoint, most of the prob-
lems arise from the non-linear convective terms. Using term-by-term operator splitting [11],
the shallow water equations can be solved by decomposing them into the following two
split equations:

@
@t

∫
�
U d� +

∫
�
H • dS = 0 (5)
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3.1. Inviscid terms

Equation (5) can be discretized as follows:

@
@t
Ui; j�i; j +

M∑
m=1
Hm • Sm=0 (7)

where �ij denotes the area of cell (i; j), Sm is the outward pointing normal vector to side m
of cell (i; j) whose length is the length of the side, Hm represents the numerical �ux tensor
at cell interface m with the sum taken over the number of sides M of cell (i; j). Uij is the
integral average value of the �ow solution vector U over the cell (i; j) located at its centre.
The numerical method we use is a Godunov-type upwind scheme and a detailed exposition

can be found in Reference [12]. Godunov [13] showed how to make use of characteristic
information within the framework of a conservative method. He proposed that the numerical
�ux could be obtained by solving a local Riemann problem at each cell interface. In one
dimension, the Godunov scheme can be expressed as

Un+1
i =Un

i − �t
�x
[F(ULi+1=2;U

R
i+1=2)x=t=0 − F(ULi−1=2;URi−1=2)x=t=0] (8)

where F represents the numerical �ux at the cell interface obtained by solving a local Riemann
problem using the data UR and UL on each side of the cell interface.
Exact Riemann solvers are computationally expensive, particularly for nonlinear systems.

Fortunately, a number of computationally inexpensive approximate Riemann solvers have been
developed. The HLL approximate Riemann solver [14] has been found to be robust in appli-
cations and simple to implement [15]. However, the HLL approximate Riemann solver ignores
the existence of the contact wave (Figure 1). Without consideration of the contact wave, any
di�erence in the �ux components parallel to a cell interface is assumed to take place across
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Figure 1. Riemann problem and contact wave.

the interface. This assumption is not always physically correct. In some applications, for
example in the test case of Oblique Bore Re�ection (Section 5.3), this defect can lead to
poor numerical resolution around the contact surface [10].
To overcome this problem, Toro et al. [16] introduced the HLLC approximate Riemann

solver. Subsequently, Hu [10] suggested an improved HLLC approximate Riemann solver
(referred to HLLCM in this paper).
The �rst-order Godunov method uses a piecewise constant approximation to reconstruct

the data at cell interfaces from the stored cell centre data. In a MUSCL (stands for mono-
tone upstream-centred schemes for conservation laws) scheme [8], the piecewise constant
approximation is replaced by piecewise linear approximation, which gives second-order
spatial accuracy:

ÛRi+1=2; j =Ui+1; j − 1
2�(ri+1; j) • �Ui+1=2; j (9)

ÛLi+1=2; j =Ui; j + 1
2 (ri; j) • �Ui−1=2; j (10)

where �Ui+1=2; j=Ui+1; j − Ui; j, �Ui−1=2; j=Ui; j − Ui−1; j, ri; j= �Ui+1=2; j=�Ui−1=2; j, ri+1; j=
�Ui+3=2; j=�Ui+1=2; j.  is a slope limiter function and r is the ratio of successive gradients.
The slope limiter function  limits the gradient in order to avoid non-physical overshoots or
undershoots in the reconstructed data at each cell interface. We use the well-known van Leer
limiter for the present test problems:

�=
r+ |r|
1 + r

(11)

To maintain stability and obtain second-order accuracy in time, a Hancock two-stage time
integration method is applied [10].

3.2. Source terms

The split Equation (6) for the viscous terms, incorporating the remaining source terms, can
be solved by the implicit Euler method after evaluating the �uxes around cell interfaces using
Green’s theorem. To construct the viscous numerical �uxes, it is necessary to evaluate �rst-
order derivatives of the velocities at each cell interface. This is not a trivial task particularly
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Figure 2. Evaluation of �rst-order derivatives.

if the mesh is distorted. By the method of Jacobian transformation, Deiwert [17] provided the
following approximations for the �rst-order derivatives:
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where (·) denotes u or v; � and � are two-dimensional directions in curvilinear grid. For the
interface A illustrated in Figure 2, the di�erences of u, v, x and y can be obtained using an
auxiliary control volume �A, i.e. �(·)�=(·)i; j+1 − (·)i; j and �(·)�=(·)P − (·)Q, where (·)P is
interpolated from cell values of (·)i+1; j and (·)i+1; j+1, and (·)Q is interpolated from cell values
of (·)i−1; j and (·)i−1; j+1. To achieve second-order spatial accuracy, the values of the six cells
encompassed by �A are used to provide the numerical �ux at cell interface A. The Jacobian
approximation relies on some degree of smoothness of the mesh and the mesh should not be
too distorted.

3.3. Stability conditions and operator splitting

The explicit scheme for the inviscid terms gives rise to the CFL time step constraint. One of
the advantages of structured grid is the use of operator splitting to increase the time step [11].
The time step for 2D inviscid �ow with dimensional splitting is given by [10]
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where � denotes the area of a cell; c=�1=2; � is the Courant number; and i, j denote the
two coordinate directions of a structured grid. It is the one-dimensional CFL condition. If cell
sizes and velocities are equal in the i and j directions, the time step can be as twice long as
the one by the two-dimensional CFL condition using unstructured grid.

3.4. Boundary conditions

For the problems studied in this paper, two types of boundary conditions are required, namely
fully-slip solid and transmissive boundary conditions. These are imposed as follows [18]:

(i) Fully-slip solid boundary conditions

�M+1 =�M ; u′
M+1 = − u′

M ; v′
M+1 = v′

M (15)

�M+2 =�M−1; u′
M+2 = − u′

M−1; v′
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M−1

(ii) Transmissive boundary conditions
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M ; v′
M+1 = v′

M

�M+2 =�M−1; u′
M+2 = u′

M−1; v′
M+2 = v′

M−1 (16)

where M − 1 and M denote the last two cells adjacent to the boundary inside the
computational domain (Figure 3). M + 1 and M + 2 are two �ctitious cells (‘ghost
cells’) outside the computational domain and u′ and v′ are the components of velocity
q normal and tangential to the boundary, respectively. Transmissive boundaries, also
called ‘transparent boundaries’, allow waves to pass through without re�ection.

Computational domain

Boundary

“Ghost” cells

M-1 M M+1 M+2

Figure 3. Sketch of computational cells inside and outside boundary.
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4. PATCHING ALGORITHM

4.1. Patching operators and interface zone

The new patching algorithm is an non-overlaid system. However, overlaid grids can be con-
verted to non-overlaid grids in a straightforward manner. Consider an overlaid patched grid
system illustrated in Figure 4. The overlaid patched grid can be converted to a non-overlaid
grid by introducing an interface line (Figure 4). Therefore, the new patching algorithm is also
applicable to overlaid patching with a pre-processor to establish the interface line.
Any patching system can be expressed using two basic patching connections, i.e. embed and

attach, which are illustrated in Figures 5 and 6. It is interesting to note that a model can be
attached to itself, i.e. one side of a model can be attached to other side of itself (Figure 7).This
can be directly applied to an O-type branch-out grid con�guration in curvilinear grid generation
[19]. The ‘attach-to-itself’ con�guration is used in the circular dam break test problem (see
Section 5.2).

Interface Line

Grid A Grid B 

Figure 4. Sketch showing an interface line for overlaid grids.

Main model

Sub-model

Figure 5. Sketch of the attach connection.
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Main model

Sub-model

Figure 6. Sketch of the embed connection.

Figure 7. One side of a grid attaches to the other side of itself.

In MUSCL reconstruction, to maintain second-order spatial accuracy, an interface zone
between two grids is de�ned (Figure 8). The original cells in the interface zone may be
divided into small cells (referred to as sub-cells) to match the opposite grid. The use of a
sub-cell is for MUSCL reconstruction only, and the details are discussed in the next section.

4.2. Numerical inviscid �ux

To ensure the conservation of mass and momentum during the process of patching, it is
important that the models are linked by the numerical �ux, i.e. �uxes are conserved. In �rst-
order patch modelling, cell division into sub-cells is not required because of the assumption
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Interface Line

Grid A 

Grid B 

Interface Zone

Figure 8. Sketch of the patching interface zone.

of piecewise constant data at each cell interface. However, MUSCL reconstruction to second
order is not straightforward at the patch interface. The piecewise linear approximation requires
values of U from neighbouring cells. At the patch interface, one neighbouring cell sits in the
opposite model.
For the purposes of MUSCL reconstruction, the original cell in the interface zone is divided

into sub-cells to match the grid in the other model. The values of U in the sub-cell are set
to the same values as the original cell of which the sub-cell is a part. It may be argued that
the values of U in the sub-cell could be spatially interpolated with respect to the location of
the sub-cell centre. Nevertheless, our numerical experiments show that the former treatment
provides better results. This may indicate that of more importance is the need to conserve
mass and momentum in the solution algorithm.
The process of MUSCL reconstruction and consequent numerical �ux computation is carried

out on sub-cells at the patch interface. The numerical �ux at the original cell at the patch
interface is the sum of numerical �uxes in its all sub-cells:

Fi; j=
m∑
k
F(k)i; j (17)

where Fi; j is the numerical inviscid �ux for the original cell at the patch interface which
consists of m sub-cell boundaries.

4.3. Numerical �ux for source terms

For the source terms including the viscous terms, the patching process is less complicated.
The only remaining problem may be the evaluation of �rst-order derivatives for the velocities
at the cell boundary. The Deiwert method described in Section 3.2 for the viscous terms can
be applied in a straightforward manner. Assuming the interface A is located at the patch
interface (Figure 2), the only di�erence from the normal calculation for �rst-order derivatives
is that the values at point T are obtained by interpolation within the right-side model and the
values at points P and Q are obtained by interpolation between the two models. It should
be noted that interpolation is used only for the values of the �rst-order derivatives of the
velocities. Conservation of the numerical �ux for the source terms, including the viscous
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terms, is satis�ed by directly evaluating the �ux around the cell interfaces using the �nite
volume formulation.

4.4. Time marching

Since the local time steps may vary from one sub-model to another, the patching algorithm
allows the use of di�erent time steps in each sub-model for improved computational e�ciency.
For each step of the whole patching model, there may be several solution steps in a sub-model.
The time marching of a sub-model can be expressed in a form of:

Lp(�t)Lc(�t)= {Lp(�t′1)L
c(�t′1)}{Lp(�t′2)L

c(�t′2)} · · · {Lp(�t′k)L
c(�t′k)} (18)

where Lp and Lc represent the predictor and corrector steps of the two-stage Hancock time
integration scheme [10]; �t is the time step for the whole patched model, and �ti is the
maximum local time step for a sub-model i; �t′i is the actual local time step, �t′i =�t=k and
k= int((�t − �)=�ti)+1; � is a small number (6 10−6). When �t′i =�t (k=1), it is single
step time marching.
In �rst-order patch modelling, the operator sequence (18) is applied in each sub-model

independently. As MUSCL reconstruction is required at the second stage of the Hancock time
integration method, implementation of (18) at each sub-model is no longer independent for
the second-order patch modelling, and the following time marching procedure is introduced:

Time marching procedure for second-order patching

1. Hancock �rst-stage MUSCL reconstruction for all sub-models.
2. Predictor for the �rst time step of all sub-models.
3. Hancock second-stage MUSCL reconstruction for all sub-models.
4. Corrector for the �rst time step of all sub-models.
5. Complete the following loop for sub models which have more than one time step.

5.1. First-stage MUSCL reconstruction.
5.2. Predictor.
5.3. Second-stage MUSCL reconstruction.
5.4. Corrector.
5.5. Repeat 5.1–5.4 until all time steps have been done for this sub-model.

6. Repeat 5.1–5.5 until time integration has been done for all sub-models.

The above time marching procedure is illustrated in Figure 9. The �rst step of this procedure
is that all sub-models are advanced by one local time step of each patch. The sub-model with
largest grid size will be updated by a full time step by a single iteration whilst other sub-
models may require a few more local time steps to achieve the same time level. The potential
problem of this procedure is that, at second-stage MUSCL reconstruction, variables at two
sides of a patch interface may be held at di�erent time levels. This may be argued that repeat
of the second-stage MUSCL reconstruction is needed in the sub-models with larger local
time steps. It can be a time consuming process if there are many di�erent local time steps
across the whole model. Our numerical experiments show there is little bene�t in correcting
second-stage MUSCL reconstruction in coarse-grid sub-models. This may be explained by the
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Start

MUSCL (1st stage)
sub-model n 
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n=1, N

Predictor (Ln(∆t1))

n=1, N

MUSCL (2nd stage)
sub-model n 

n=1, N

Corrector (Ln(∆t1))

MUSCL (1st stage)
sub-model n 

i=2, kn

Corrector (Ln(∆t1))

Terminator

MUSCL (2nd stage)
sub-model n 

Predictor (Ln(∆t1))

n=1, N

Figure 9. Time marching procedure for second-order patch modelling.

fact that the MUSCL reconstruction is used to suppress non-physical over-shoots or under-
shoots problem due to arrival of bores, and an arriving shock from a �ne-grid sub-model will
be tackled in the following local time step if it is missed in the previous local time step.
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It is important to note that much of this algorithm consists of independent computa-
tions over a number of patches and thus the code is easily parallelizable for increased
computing speed.

5. NUMERICAL EXPERIMENTS

In the following test problems, the van Leer slope limiter is adopted for all tests and the
Courant number is set to unity.

5.1. Bore wave travelling through an embedded �ne grid

The problem domain was a rectangular basin of 450m wide and 600m long. The computation
grid for the main model had 30× 40 cells, i.e. �x=�y=15m. A �ne-grid sub-model 150m
wide by 300m long was embedded in the middle of the main model (Figure 10). The edges
of the embedded model were 150m away from the four edges of the main model. Only
inviscid �ow was considered here. Initially, the water depth in the computational domain was
set to 1.0m and the water was at rest.
A right travelling bore was assumed to enter the domain from the left boundary. A transmis-

sive boundary (de�ned in Section 3.4) was used at the other three boundaries. For the incident
bore, three di�erent Froude numbers (Fs) were tested, namely 2; 3 and 4. The computation
was stopped when the bore reached the middle of the domain.
The left boundary conditions were obtained using the following equations [20]:

�L = d�R ; uL =
(
1− 1

d

)
s; vL=0 (19a)

d=0:5
(√

1 + 8F2S − 1
)

(19b)

where �R =
√

ghR, hR =1; s is the propagation speed of the incident bore and s=FS

√
�R.

Three di�erent grid resolutions were tested for the embedded sub-model. They were
7:5m× 7:5m; 3:75m× 3:75m and 1:875m× 1:875m, i.e. resolution ratios of the main model
and the sub-model were 1:2; 1:4 and 1:8. The results are presented in the form of water
depth contours (Figures 11–13). The interval of the water depth contours is 0.1m. Table I
summarizes the mean errors calculated within the patched area. The errors are based on the
comparison with a �ne-grid non-patched model. The left boundary of this non-patched model
is at the same location of the left boundary of the patched model, and boundary conditions
are provided by the coarse-grid model. Therefore, Table I presents the errors originated along
the top and bottom of patch interfaces.
A bore wave travelling along the patch interface provides an extreme condition for testing

the patch model, which is the case along the top and bottom of the embedded model. It is
inevitable that there are di�erences in the conservative variables between two models due to
a di�erence in the grid resolution. The magnitude of the error introduced along the patching
interface depends on the Froude number and the resolution ratio between the two models.
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Figure 10. Test 5.1—sketch of the embedded grid.

(a) (b) (c)

Figure 11. Test 5.1—water depth contours: (a) Fs=2 and resolution ratio=1:2; (b) Fs=2 and
resolution ratio=1:4; and (c) Fs=2 and resolution ratio=1:8.

Table I. Average errors of the patched model (water depth within patched area).

Froude no. 2 2 2 3 3 3 4 4 4

Resolution ratio 1:2 1:4 1:8 1:2 1:4 1:8 1:2 1:4 1:8
Average error (%) 0.16 0.26 0.36 0.25 0.42 0.57 0.28 0.46 0.62
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(a) (b) (c)

Figure 12. Test 5.1—water depth contours: (a) Fs=3 and resolution ratio=1:2; (b) Fs=3 and
resolution ratio=1:4; and (c) Fs=3 and resolution ratio=1:8.

(a) (b) (c)

Figure 13. Test 5.1—water depth contours: (a) Fs=4 and resolution ratio=1:2; (b) Fs=4 and
resolution ratio=1:4; and (c) Fs=4 and resolution ratio=1:8.

When the Froude number of the bore and resolution ratio exceed 3 and 4, respectively, rel-
atively large errors were shown. However, excellent results were obtained for all resolution
ratios, i.e. 1:2; 1:4 and 1:8 when the Froude number was equal and less or equal to 2. There-
fore, it may be concluded that the error introduced along the patch interface is insigni�cant
for most practical shallow water �ow simulations (e.g. Fs6 2). However, further attention
may be needed for �ows where the Froude number exceeds 2.
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Figure 14. Test 5.2—computation grids for circular dam break.

This test also provided a good opportunity to test the time marching algorithm since the
errors associated with a bore travelling along a patch interface could be ampli�ed by an
improper time marching procedure.

5.2. Circular dam break

A circular dam with a radius of 11m was collapsed suddenly and completely, with water
�ushed out in all directions. The initial water depth within the dam was 10 and 1m outside.
The bed of the basin was assumed frictionless and �at, and the �uid viscosity was ignored.
In this case, an O-type branch-out grid (25× 50 cells) with ‘patch-to-itself con�guration’

was used (Figure 14). Apart from testing the patch modelling, it also provides a test for
the �nite volume modelling because of the non-uniformity of grid cells both in size and
orientation and the �ow singularity at the origin.
Figure 15 shows a 3-D view of the water surface elevation obtained t=0:69 s after breaking.

Water surface elevation contours and velocity vector plots are presented in Figures 16 and 17,
respectively. For the cells around the centre point, extrapolation instead of interpolation is used
within MUSCL reconstruction. The results compare favourably with the work of Alcrudo [21]
and Mingham and Causon [22].

5.3. Oblique bore re�ection

This is equivalent to shock wave re�ection at a wedge in gas dynamics, which has been
extensively used in testing the capability of numerical schemes for shock waves particularly
the interaction of shock waves [23]. Four di�erent types of self-similar oblique bore re�ections
have been observed in shallow water and discussed by Mingham and Causon [22], namely
regular re�ection (RR), single Mach re�ection (SMR), transitional Mach re�ection (TMR) and
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Figure 15. Test 5.2—water surface at t=0:69 s after breaking.
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Figure 16. Test 5.2—contour of water depth at t=0:69 s after breaking.

double Mach re�ection (DMR). All four types of bore re�ection have been tested previously
using the non-patching AMAZON code [10]. In this paper, the most complicated DMR case
is used to test the new patching method.
A right travelling bore wave travels down a channel and interacts with one bank inclined

at an angle of into the direction of �ow. The channel is �at-bottomed, and both bed and side
wall friction are ignored. Flow turbulence and �uid viscosity are also not considered. Initially,
the water depth is 1.0m and the water is at rest.
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Figure 17. Test 5.2—velocity vectors t=0:69 s after breaking.

The wall inclination angles � is set to 50◦. The Froude number (Fs) of the incident bore was
set to Fs=3:81. Time t=0 corresponds to the arrival of the incident bore at the corner point
on the bank. The left boundary conditions were obtained using Equations (19a) and (19b).
The fully-slip boundary (described in Section 3.4) was used along the lower and the upper
banks, and the transmissive boundary condition was applied at the right boundary.
A boundary �tted skewed grid with 600 cells in the �ow direction and 300 cells in trans-

verse direction is used in a single-grid model. Instead of a single �ne grid with 600× 300
cells (1m× 3m) over the whole area, a patched model includes a main model with 120× 75
cells (5m× 12m) and an embedded sub-model with 110× 80 cells (1m× 4m) as illus-
trated in Figure 18. The resolution ratios were 1:5 and 1:3 in the longitudinal and transverse
directions, respectively.
The results are presented in Figure 20. Compared to the results with the single grid model

(Figure 19), the features around the Mach stem are almost identical, though there are some
minor spurious contours along the patch interface. It can be seen that the errors introduced
along the patch interface do not spread even at a Froude number Fs≈ 3:81 and resolution
ratios of 1:5 and 1:3. In Section 5.1, the results suggest that particular attention may be needed
for Froude numbers exceeding 2 and resolution ratios exceeding 1:2. However, the results of
this test may suggest that patched modelling is still valid even for �ows with high Froude
numbers (Fs¿ 2) if the patch interface is kept su�ciently far from the area of interest.
The above patching model required 30min on a PC powered by a 650MHz Pentium III

processor. The non-patching model with a single �ne grid took 2 h 8min to complete on the
same PC. Thus, the patching model was 4.3 times more e�cient than the non-patching model
in this case.
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Figure 18. Test 5.3—patch grid for oblique bore re�ection.

5.4. Bore wave travelling over a submerged hump

This test case is given by LeVeque [24], which shows bore refraction by a bed feature.
The case provides a good opportunity to test the patch algorithm as the error introduced by
discontinuity of grid resolution may be intensi�ed by topographic change.
An isolated elliptical shaped hump de�ned by Equation (20) is in a rectangular basin of

2m long and 1m wide, as illustrated in Figure 21.

B(x; y)=0:8 exp(−5(x − 0:9)2 − 50(y − 0:5)2) (20)

The water surface is initially �at with water depth h=1−B except for 0:05¡x¡0:15, where
h is perturbed upward by 0.01m. The perturbation induces two bores travelling in an opposite
direction. Transmissive boundaries (described in Section 3.4) are applied to the four edges of
the basin so bores eventually leave the basin without any re�ection back to the domain.
The above described case was simulated on both a single �ne grid (600× 300) and a

patched grid. In the patched grid, a �ne grid of 525× 90 embedded in a coarse grid of
200× 100 in a rectangular of [(0:05; 0:35)− (1:8; 0:65)] (see Figure 21). Like other cases, bed
friction, turbulence and viscosity are not considered. The gravitational constant g was set to 1
in this case so that the results were comparable to those produced by LeVeque [24].
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Figure 19. Test 5.3—oblique bore re�ection t=24 s (double Mach re�ection)—single mesh
(above—Froude number; below—water depth).

The results of single-grid and patched-grid models are presented in Figures 22 and 23,
respectively. Figure 23 shows that the disturbance complex in the centre of the basin was
well captured by the patched-grid model, compared to the single-grid model. It is noted the
di�erence of the interaction of the bores in front of the disturbance complex. The bore inter-
action is caused by faster moving bores along two edges due to deeper water and subsequent
refraction once they pass the slow moving bore in the centre. The poorer resolution at the
bore interaction was a result of coarse grids along two edges. In general, the results com-
pare closely with the work of LeVeque [24], the errors generated along the discontinuities
between two grid resolution do not spread, and the performance of the patched-grid model
is satisfactory.
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Figure 20. Test 5.3—oblique bore re�ection t=24 s (double Mach re�ection)—patched mesh
(above—Froude number; below—water depth).

6. CONCLUSIONS

A new patching algorithm is presented for shallow water �ows together with brief description
of the numerical schemes of �nite volume model AMAZON. The model has been tested using
dam break and moving bores with high Froude numbers. Excellent results were obtained for
resolution ratio up to 1:8 between coarse and �ne grids for Froude numbers not exceeding
2, which is the situation for most practical shallow water �ows. The numerical experiments
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Figure 21. Test 5.4: elliptical hump (dashline indicates an embedded �ne grid in the patch model).
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Figure 22. Test 5.4: water depth contours at: (a) t=0:6 s; (b) t=0:9 s; (c) t=1:2 s; (d) t=1:5 s;
and (e) t=1:8 s (single grid model).
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Figure 23. Test 5.4: water depth contours at: (a) t=0:6 s; (b) t=0:9 s; (c) t=1:2 s; (d) t=1:5 s; and
(e) t=1:8 s (patched model; dash line indicates the embedded �ne-grid).

show that attention is needed for �ow where the Froude number exceeds 2 and that the in-
terface between coarse and �ne grids should be kept su�ciently far from the area of interest.
The algorithm is parallelizable, thus computation speed can be further increased. The authors
believe that the new mesh patchable model is particularly useful for practical real-time sim-
ulation with complicated geometry and the occurrence of surges and supercritical �ow, for
example real-time �ood inundation modelling in a complicated estuary or urban area.
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